Electron small polarons and their transport in bismuth vanadate: a first principles study.
نویسندگان
چکیده
Relatively low electron mobility has been thought to be a key factor that limits the overall photocatalytic performance of BiVO4, but the behavior of electrons has not been fully elucidated. We examine electron localization and transport in BiVO4 using hybrid density functional theory calculations. An excess electron is found to remain largely localized on one V atom. The predicted hopping barrier for the small polaron is 0.35 eV (with inclusion of 15% Hartree-Fock exchange), and tends to increase almost linearly with lattice constant associated with pressure and/or temperature changes. We also examine the interaction between polarons, and discuss the possible concentration-dependence of electron mobility in BiVO4.
منابع مشابه
Ab initio study of the migration of small polarons in olivine LixFePO4 and their association with lithium ions and vacancies
Using first-principles pseudopotential calculations, we investigate the formation and transport of small polarons in olivine LixFePO4. It is demonstrated that excess charge carriers form small polarons in LiFePO4 and FePO4. Lower limits to the activation barrier for small polaron migration are calculated within the GGA+U framework. Additionally, the interaction between lithium ions and polarons...
متن کاملPhotodegradation process for the removal of acid orange 10 using titanium dioxide and bismuth vanadate from aqueous solution
In this study, the photocatalytic degradation of azo-dye acid orange 10 was investigated using titanium dioxide catalyst suspension, irradiation with ultraviolet-C lamp and bismuth vanadate under visible light of light-emitting diode lamp. Response surface methodology was successfully employed to optimize the treatment of acid orange 10 dye and assess the interactive terms of four factors. The ...
متن کاملSimultaneous enhancements in photon absorption and charge transport of bismuth vanadate photoanodes for solar water splitting
n-Type bismuth vanadate has been identified as one of the most promising photoanodes for use in a water-splitting photoelectrochemical cell. The major limitation of BiVO4 is its relatively wide bandgap (∼2.5 eV), which fundamentally limits its solar-to-hydrogen conversion efficiency. Here we show that annealing nanoporous bismuth vanadate electrodes at 350 °C under nitrogen flow can result in n...
متن کاملFirst Princiles Study of the Electron Transport Properties of Buthane-dithiol Nano-Molecular Wire
We report a first-principles study of electrical transport in a single molecular conductor consisting of a buthane-dithiol sandwiched between two Au (100) electrodes. We show that the current was increased by increasing of the external voltage biases. The projected density of states (PDOS) and transmission coefficients (T(E)) under various external voltage biases are analyzed, and it suggests t...
متن کاملVariation in Surface Ionization Potentials of Pristine and Hydrated BiVO4
Bismuth vanadate (BiVO4) is a promising material for photoelectrochemical water splitting and photocatalytic degradation of organic moieties. We evaluate the ionization potentials of the (010) surface termination of BiVO4 using first-principles simulations. The electron removal energy of the pristine termination (7.2 eV) validates recent experimental reports. The effect of water absorption on t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 17 1 شماره
صفحات -
تاریخ انتشار 2015